Red exclamation Your browser does not support the Enhanced PDF
1

Past environmental change and seawater intrusion into coastal Lake Lilaste, Latvia

I. Grudzinska, J. Vassiljev, L. Saarse, T. Reitalu, S. Veski

Diatoms, organic matter and magnetic susceptibility in a 10-m-long sediment sequence from coastal Lake Lilaste, Latvia, were analysed to evaluate Holocene environmental changes related to past sea-water intrusions. Lake Lilaste is located ~1 km from the present sea coast in an area with a low uplift rate and a threshold altitude of 0.5 m a.s.l. It was thus considered to be an appropriate site to study the influence of past sea level fluctuations on the lake and its sediments. Variations in diatom community composition, along with sediment lithostratigraphy, show that a shallow, nutrient-rich freshwater lake existed there during the early Holocene. The first brackish-water diatoms appeared concurrent with a sea level rise ca. 8700 ± 50 cal a BP, but long-term, intermittent inputs of brackish water were observed between 6700 ± 40 and 4200 ± 80 cal a BP. During those time spans, diatoms indicate increased nutrient concentrations and high conductivity, a consequence of occasional mixing of brackish and freshwater that promoted biological productivity. Lilaste was isolated from the sea at 4200 ± 80 cal a BP, after which a stable freshwater environment, dominated by planktonic diatoms such as Aulacoseira ambigua, A. granulata, A. islandica and A. subarctica, was established. At 400 ± 50 cal a BP, planktonic diatoms were gradually replaced by Fragilaria spp., indicating the beginning of anthropogenic impact. The reconstructed relative water-level curve from the lake coincides with the eustatic sea level curve from 6800 ± 40 cal a BP onwards. There was a distinct increase in abundance of brackish-water diatoms when the sea level reached the threshold of Lilaste, which at that time was probably about 3 m lower than the present sea level. According to radiocarbon-dated shifts in the diatom community composition, the Litorina Sea transgression was a long-lasting event (ca. 2200 years) in the southern part of the Gulf of Riga, where the land uplift rate was near zero. It culminated more than 1000 years later than at other sites with higher uplift, in the northern part of the Baltic Sea.